Utilizing a transparency-driven environment toward trusted automatic genre classification: A case study in journalism history

With the growing abundance of unlabeled data in real-world tasks, researchers have to rely on the predictions given by black-boxed computational models. However, it is an often neglected fact that these models may be scoring high on accuracy for the wrong reasons. In this paper, we present a practical impact analysis of enabling model transparency by various presentation forms. For this purpose, we developed an environment that empowers non-computer scientists to become practicing data scientists in their own research field. We demonstrate the gradually increasing understanding of journalism historians through a real-world use case study on automatic genre classification of newspaper articles. This study is a first step towards trusted usage of machine learning pipelines in a responsible way.

A Case Study in Journalism History

pdf | 873.891 kB

Recent Articles

Learn more about our Media & Events
learn more

Thanks for reaching out. We'll be in touch.


Successfully subscribed to the VIQTOR DAVIS newsletter